WHY IN HIV GRADUALLY CD4 CELLS(T-CELL) DECREASE IN NUMBER
PROF.DRRAM ,HIV/AIDS,SEX Diseases, Hepatitis .& Deaddiction Expert
profdrram@gmail.com,+917838059592,+919832025033,DELHI,INDIA
HIV/ AIDS,CANCER MODERN MEDICINES AVAILABLE AT CHEAP RATE.
FOLLOW ON FACE BOOK:www.facebook.com/ramkumar
FOLLOW ON TWITTER:www.twitter.com/profdrram
Sometimes even cells get tired. When the T cells of your immune system are forced to deal over time with cancer or a chronic infection such as HIV or hepatitis C, they can develop "T cell exhaustion," becoming less effective and losing their ability to attack and destroy the invaders of the body. While the PD-1 protein pathway has long been implicated as a primary player in T cell exhaustion, a major question has been whether PD-1 actually directly causes exhaustion. A new paper from the lab of E. John Wherry, PhD, a professor of Microbiology and Director of the Institute for Immunology, in the Perelman School of Medicine at the University of Pennsylvania, seems to -- at least partially -- let PD-1 off the hook. The paper was published in the Journal of Experimental Medicine.
In short-term infections such as a cold or flu, PD-1 helps to regulate an initial strong T cell response, preventing the T cells from over proliferating and attacking the body's own cells after the infection is cleared. But in patients with cancer or chronic infections, blocking PD-1 has proved a highly successful therapeutic strategy that allows the T cells to fight on. "Blocking this pathway reverses T cell exhaustion and improves tumor immunity in humans and antiviral and anti-tumor responses in animal models," Wherry notes. "But a key question has been whether this PD-1 pathway causes exhaustion. Our work shows that it does not."
Aside from helping to better design PD-1 blockade treatments, Wherry's findings have also helped to identify potential biomarkers in the PD-1 signaling pathway. This additional information will help in the next steps of the research, which involve more detailed study of the PD-1 at different points in its pathway and with different viral or tumor loads. "We still don't know the molecular signals downstream of PD-1 in vivo or how PD-1 signals intersect with other immunotherapies," Wherry says. "We are actively addressing these questions."